# Decomposition into weight × level + jump - all 2D graphs

Home

## Decomposition of Central polygonal numbers

Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
A000124(n) = A000000(n) * A000000(n) + (n + 1)

## Decomposition of Lower Wythoff sequence

Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2.
A000201(n) = A000000(n) * A000000(n) + A014675(n)

## Decomposition of Triangular numbers

Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
A000217(n) = A130703(n) * A184219(n) + (n + 1)

## Decomposition of A000378

Numbers of the form x^2 + y^2 + z^2 (x, y, z >= 0).
A000378(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000379

A 2-way classification of integers: complement of A000028.
A000379(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000404

Numbers that are the sum of 2 nonzero squares. (seq not found)
A000404(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000408

Numbers that are the sum of 3 nonzero squares.
A000408(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000415

Numbers that are the sum of 2 but no fewer nonzero squares.
A000415(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000452

a(n) is smallest number which avoids any 3-term geometric progression.
A000452(n) = A000000(n) * A000000(n) + A000000(n)