Decomposition into weight × level + jump - all 2D graphs

Home

Decomposition of A060254

Primes which are the sum of two consecutive composite numbers.
A060254(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A060254 - 9998 dots.

Decomposition of A060874

Intrinsic 4-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
A060874(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A060874 - 9997 dots.

Decomposition of A060879

Intrinsic 9-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
A060879(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A060879 - 9997 dots.

Decomposition of A060947

Intrinsic 10-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
A060947(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A060947 - 9996 dots.

Decomposition of A061276

Numbers which are sums of repdigits of their digits.
A061276(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A061276 - 7468 dots.

Decomposition of A061346

Odd numbers that are neither primes nor prime powers.
A061346(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A061346 - 9998 dots.

Decomposition of A061384

Numbers n with property that sum of digits = number of digits.
A061384(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A061384 - 9990 dots.

Decomposition of A061426

Geometric mean of the digits = 2. In other words the product of the digits is = 2^k where k is the number of digits.
A061426(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A061426 - 9988 dots.

Decomposition of A061641

Pure numbers in the Collatz (3x+1) iteration. Also called pure hailstone numbers.
A061641(n) = A000000(n) * A000000(n) + A000000(n)
Decomposition of A061641 - 9996 dots.