# Decomposition into weight * level + jump - all 2D graphs

Home

## Decomposition of Natural numbers - Sieve of Eratosthenes

The natural numbers. Also called the whole numbers, the counting numbers or the positive integers.
A000027(n) = A020639(n-1) * A032742(n-1) + 1

## Decomposition of A000028

Let n = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives n such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.
A000028(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of Not squares

Numbers that are not squares.
A000037(n) = A000000(n) * A000000(n) + A062557(n)

## Decomposition of Prime numbers

The prime numbers.
A000040(n) = A117078(n) * A117563(n) + A001223(n)

## Decomposition of A000059

Numbers n such that (2n)^4 + 1 is prime.
A000059(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000062

A Beatty sequence: [ n/(e-2) ].
A000062(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000068

Numbers n such that n^4 + 1 is prime.
A000068(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of Odious numbers

Odious numbers: numbers with an odd number of 1's in their binary expansion.
A000069(n) = A000000(n) * A000000(n) + A000000(n)

## Decomposition of A000093

floor(n^(3/2)).
A000093(n) = A000000(n) * A000000(n) + A035936(n)

## Decomposition of A000096

n*(n+3)/2.
A016885(n) = A000000(n) * A000000(n) + (n + 2)